Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm.

نویسندگان

  • Brian R Daniels
  • Richa Rikhy
  • Malte Renz
  • Terrence M Dobrowsky
  • Jennifer Lippincott-Schwartz
چکیده

Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional "compartmentalization" has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal effect mutations of the sponge locus affect actin cytoskeletal rearrangements in Drosophila melanogaster embryos

In the syncytial blastoderm stage of Drosophila embryogenesis, dome-shaped actin "caps" are observed above the interphase nuclei. During mitosis, this actin rearranges to participate in the formation of pseudocleavage furrows, transient membranous invaginations between dividing nuclei. Embryos laid by homozygous sponge mothers lack these characteristic actin structures, but retain other actin a...

متن کامل

Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms

Segments are formed simultaneously in the blastoderm of the fly Drosophila melanogaster through a hierarchical cascade of interacting transcription factors. Conversely, in many insects and in all non-insect arthropods most segments are formed sequentially from the posterior. We have looked at segmentation in the milkweed bug Oncopeltus fasciatus. Posterior segments are formed sequentially, thro...

متن کامل

Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura

MOTIVATION To date, computational searches for cis-regulatory modules (CRMs) have relied on two methods. The first, phylogenetic footprinting, has been used to find CRMs in non-coding sequence, but does not directly link DNA sequence with spatio-temporal patterns of expression. The second, based on searches for combinations of transcription factor (TF) binding motifs, has been employed in genom...

متن کامل

Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos

The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three-dimensional optical sectioning microscopy. Time-lapse, three-dimensional data recorded in living embryos revealed that congress...

متن کامل

Bicoid gradient formation and function in the Drosophila pre-syncytial blastoderm

Bicoid (Bcd) protein distributes in a concentration gradient that organizes the anterior/ posterior axis of the Drosophila embryo. It has been understood that bcd RNA is sequestered at the anterior pole during oogenesis, is not translated until fertilization, and produces a protein gradient that functions in the syncytial blastoderm after 9–10 nuclear divisions. However, technical issues limite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 22  شماره 

صفحات  -

تاریخ انتشار 2012